Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Biol Macromol ; 158: 159-179, 2020 Sep 01.
Article in English | MEDLINE | ID: covidwho-141701

ABSTRACT

Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.


Subject(s)
Epitopes/chemistry , Malaria Vaccines/chemistry , Molecular Docking Simulation , Plasmodium falciparum/immunology , Administration, Oral , Antibody Affinity , Binding Sites, Antibody , Epitopes/immunology , Humans , Immunogenicity, Vaccine , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
SELECTION OF CITATIONS
SEARCH DETAIL